Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Aesthetic Plast Surg ; 48(9): 1846-1854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326498

RESUMEN

PURPOSE: Pain following costal cartilage harvest surgery is the most common complaint of auricular reconstruction (AR). Anesthesiologists are continuously searching for an effective postoperative pain control method. METHODS: This study was conducted from 10 April 2022 to 10 June 2022. Sixty children undergoing AR using costal cartilage were randomly assigned to either a serratus anterior plane block performed before costal cartilage harvest (SAPB-pre-cohort; n = 30) or the SAPB-post-cohort (Post-costal cartilage Harvest Cohort: n = 30). The primary endpoint measures were the Numerical Rating Scale (NRS) scores of the chest and ear pain degrees recorded at 1-, 6-, 12-, 24-, and 48-h after surgery. Intraoperative anesthetic and analgesic dosages, sufentanil consumption and rescue analgesia consumption during the first 24 h post-operation, cough score during extubation, extubation agitation score, length of stay, the extubation time, first ambulatory time, analgesia duration, and opioid-related adverse effects and SAPB-related adverse effects were the secondary endpoints. RESULTS: The rest and coughing NRS scores were significantly reduced in the SAPB-pre-cohort 6 and 12 h post-operation in comparison with the SAPB-post-cohort (rest 6 h p = 0.002, others p < 0.001). No significant difference in the NRS ear scores existed between the two cohorts (p > 0.05). The use of propofol and remifentanil for general anesthesia during the SAPB-pre-procedure was significantly reduced compared to the SAPB-post-group, with statistical significance (p < 0.001). Sufentanil consumption and rescue analgesia consumption were significantly reduced in the SAPB-pre-cohort (p = 0.001, p = 0.033). The extubation time and first ambulatory time were markedly shorter in the SAPB-pre-cohort (all p < 0.001). Analgesia duration was markedly longer in the SAPB-pre-cohort (p < 0.001). No significant differences were noted in the cough score during extubation, extubation agitation score, length of stay between the two cohorts (all p > 0.05). Opioid-related adverse effects occurred more in the SAPB-post-cohort, while there was no statistical significance (16.7 vs. 36.7%; p = 0.082). There were no blockade-related complications observed in either cohort. CONCLUSION: The analgesic effect of the SAPB-pre-cohort was better than the SAPB-post-cohort suggesting both efficacy and feasibility of preemptive analgesia. LEVEL OF EVIDENCE II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Microtia Congénita , Cartílago Costal , Bloqueo Nervioso , Dolor Postoperatorio , Procedimientos de Cirugía Plástica , Ultrasonografía Intervencional , Humanos , Masculino , Femenino , Niño , Dolor Postoperatorio/prevención & control , Microtia Congénita/cirugía , Bloqueo Nervioso/métodos , Procedimientos de Cirugía Plástica/métodos , Cartílago Costal/trasplante , Dimensión del Dolor , Adolescente , Estudios de Cohortes
2.
J Sport Health Sci ; 13(1): 108-117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37220811

RESUMEN

BACKGROUND: Foot kinematics, such as excessive eversion and malalignment of the hindfoot, are believed to be associated with running-related injuries. The majority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics. However, technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns (RFS and FFS, respectively). This study uses a high-speed dual fluoroscopic imaging system (DFIS) to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics. METHODS: Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models. A high-speed DFIS (100 Hz) was used to collect 6 degrees of freedom kinematics for participants' tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition. RESULTS: Compared with RFS, FFS exhibited greater internal rotation at 0%-20% of the stance phase in the tibiotalar joint. The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS (p < 0.001, Cohen's d = 0.92). RFS showed more dorsiflexion at 0%-20% of the stance phase in the tibiotalar joint than FFS. RFS also presented a larger anterior translation (p < 0.001, Cohen's d = 1.28) in the subtalar joint at initial contact than FFS. CONCLUSION: Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance. The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RFS and FFS during running.


Asunto(s)
Carrera , Articulación Talocalcánea , Humanos , Masculino , Fenómenos Biomecánicos , Articulación del Tobillo , Tobillo
3.
Front Bioeng Biotechnol ; 11: 1251324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744258

RESUMEN

Existing studies on the biomechanical characteristics of the first metatarsophalangeal joint (1st MTPJ) during shod running are limited to sagittal plane assessment and rely on skin marker motion capture, which can be affected by shoes wrapping around the 1st MTPJ and may lead to inaccurate results. This study aims to investigate the in vivo effects of different habitual foot strike patterns (FSP) on the six degrees of freedom (6DOF) values of the 1st MTPJ under shod condition by utilizing a dual-fluoroscopic imaging system (DFIS). Long-distance male runners with habitual forefoot strike (FFS group, n = 15) and rearfoot strike (RFS group, n = 15) patterns were recruited. All participants underwent foot computed tomography (CT) scan to generate 3D models of their foot. The 6DOF kinematics of the 1st MTPJ were collected using a DFIS at 100 Hz when participants performed their habitual FSP under shod conditions. Independent t-tests and one-dimensional statistical parametric mapping (1-d SPM) were employed to analyze the differences between the FFS and RFS groups' 1st MTPJ 6DOF kinematic values during the stance phase. FFS exhibited greater superior translation (3.5-4.9 mm, p = 0.07) during 51%-82% of the stance and higher extension angle (8.4°-10.1°, p = 0.031) during 65%-75% of the stance in the 1st MTPJ than RFS. Meanwhile, FFS exhibited greater maximum superior translation (+3.2 mm, p = 0.022), maximum valgus angle (+6.1°, p = 0.048) and varus-valgus range of motion (ROM) (+6.5°, p = 0.005) in the 1st MTPJ during stance. The greater extension angle of the 1st MTPJ in the late stance suggested that running with FFS may enhance the propulsive effect. However, the higher maximum valgus angle and the ROM of varus-valgus in FFS may potentially lead to the development of hallux valgus.

4.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375289

RESUMEN

In this study, the crystal appearance of industrial grade 2,6-diamino-3,5-dinitropyridine (PYX) was mostly needle-shaped or rod-shaped with an average aspect ratio of 3.47 and roundness of 0.47. According to national military standards, the explosion percentage of impact sensitivity s about 40% and friction sensitivity is about 60%. To improve loading density and pressing safety, the solvent-antisolvent method was used to optimize the crystal morphology, i.e., to reduce the aspect ratio and increase the roundness value. Firstly, the solubility of PYX in DMSO, DMF, and NMP was measured by the static differential weight method, and the solubility model was established. The results showed that the Apelblat equation and Van't Hoff equation could be used to clarify the temperature dependence of PYX solubility in a single solvent. Scanning electron microscopy (SEM) was used to characterize the morphology of the recrystallized samples. After recrystallization, the aspect ratio of the samples decreased from 3.47 to 1.19, and roundness increased from 0.47 to 0.86. The morphology was greatly improved, and the particle size decreased. The structures before and after recrystallization were characterized by infrared spectroscopy (IR). The results showed that no chemical structure changes occurred during recrystallization, and the chemical purity was improved by 0.7%. According to the GJB-772A-97 explosion probability method, the mechanical sensitivity of explosives was characterized. After recrystallization, the impact sensitivity of explosives was significantly reduced from 40% to 12%. A differential scanning calorimeter (DSC) was used to study the thermal decomposition. The thermal decomposition temperature peak of the sample after recrystallization was 5 °C higher than that of the raw PYX. The thermal decomposition kinetic parameters of the samples were calculated by AKTS software, and the thermal decomposition process under isothermal conditions was predicted. The results showed that the activation energy (E) of the samples after recrystallization was higher by 37.9~527.6 kJ/mol than raw PYX, so the thermal stability and safety of the recrystallized samples were improved.

5.
Nat Commun ; 14(1): 42, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596795

RESUMEN

Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining such CH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 - 2.9 mg CH4 m-2 d-1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that were sustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.


Asunto(s)
Dióxido de Carbono , Ecosistema , Metano , Cambio Climático , Secuestro de Carbono , Humedales
6.
Front Bioeng Biotechnol ; 10: 959807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524051

RESUMEN

Accurately obtaining the in vivo motion of the medial longitudinal arch (MLA), first metatarsophalangeal joint (MTPJ), and plantar fascia (PF) is essential for analyzing the biomechanics of these structures in different running strike patterns. Most previous studies on the biomechanics of the MLA, first MTPJ, and PF have been based on traditional skin-marker-based motion capture, which cannot acquire the natural foot motion. Therefore, this study aimed to 1) describe the movement of the MLA, first MTPJ, and PF during running by using the high-speed dual fluoroscopic imaging system (DFIS) and 2) explore changes of the in vivo kinematics of the MLA and first MTPJ, and the length of the PF during the stance phase of running with different foot strike patterns. Fifteen healthy male runners all of whom ran with a regular rearfoot strike (RFS) pattern were required to run with forefoot strike (FFS) and RFS patterns. Computed tomography scans were taken from each participant's right foot for the construction of 3D models (the calcaneus, first metatarsal, and first proximal phalanges) and local coordinate systems. A high-speed DFIS (100 Hz) and 3D force platform (2,000 Hz) were used to acquire X-ray images of the foot bones and ground reaction force data during the stance phase of running (3 m/s ± 5%) simultaneously. Then, 3D-2D registration was used to obtain the in vivo kinematic data of the MLA and first MTPJ and the length of the PF. When compared with RFS, in FFS, 1) the range of motion (ROM) of the medial/lateral (5.84 ± 5.61 mm vs. 0.75 ± 3.38 mm, p = 0.002), anterior/posterior (14.64 ± 4.33 mm vs. 11.18 ± 3.56 mm, p = 0.010), plantarflexion/dorsiflexion (7.13 ± 3.22° vs. 1.63 ± 3.29°, p < 0.001), and adduction/abduction (-3.89 ± 3.85° vs. -0.64 ± 4.39°, p = 0.034) motions of the MLA were increased significantly; 2) the ROM of the anterior/posterior (7.81 ± 2.84 mm vs. 6.24 ± 3.43 mm, p = 0.003), superior/inferior (2.11 ± 2.06 mm vs. -0.57 ± 1.65 mm, p = 0.001), and extension/flexion (-9.68 ± 9.16° vs. -5.72 ± 7.33°, p = 0.018) motions of the first MTPJ were increased significantly; 3) the maximum strain (0.093 ± 0.023 vs. 0.075 ± 0.020, p < 0.001) and the maximum power (4.36 ± 1.51 W/kg vs. 3.06 ± 1.39 W/kg, p < 0.001) of the PF were increased significantly. Running with FFS may increase deformation, energy storage, and release of the MLA and PF, as well as the push-off effect of the MTPJ. Meanwhile, the maximum extension angle of the first MTPJ and MLA deformation increased in FFS, which showed that the PF experienced more stretch and potentially indicated that FFS enhanced the PF mechanical responses.

7.
Front Bioeng Biotechnol ; 10: 917675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837546

RESUMEN

Shoes affect the biomechanical properties of the medial longitudinal arch (MLA) and further influence the foot's overall function. Most previous studies on the MLA were based on traditional skin-marker motion capture, and the observation of real foot motion inside the shoes is difficult. Thus, the effect of shoe parameters on the natural MLA movement during running remains in question. Therefore, this study aimed to investigate the differences in the MLA's kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). Fifteen healthy habitual rearfoot runners were recruited. All participants ran at a speed of 3 m/s ± 5% along with an elevated runway in barefoot and shod conditions. High-speed DFIS was used to acquire the radiographic images of MLA movements in the whole stance phase, and the kinematics of the MLA were calculated. Paired sample t-tests were used to compare the kinematic characteristics of the MLA during the stance phase between shod and barefoot conditions. Compared with barefoot, shoe-wearing showed significant changes (p < 0.05) as follows: 1) the first metatarsal moved with less lateral direction at 80%, less anterior translation at 20%, and less superiority at 10-70% of the stance phase; 2) the first metatarsal moved with less inversion amounting to 20-60%, less dorsiflexion at 0-10% of the stance phase; 3) the inversion/eversion range of motion (ROM) of the first metatarsal relative to calcaneus was reduced; 4) the MLA angles at 0-70% of the stance phase were reduced; 5) the maximum MLA angle and MLA angle ROM were reduced in the shod condition. Based on high-speed DFIS, the above results indicated that shoe-wearing limited the movement of MLA, especially reducing the MLA angles, suggesting that shoes restricted the compression and recoil of the MLA, which further affected the spring-like function of the MLA.

8.
Front Bioeng Biotechnol ; 10: 892760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651545

RESUMEN

The biomechanics of the first metatarsophalangeal joint (MTPJ) is affected by different shoe conditions. In the biomechanical research field, traditional skin marker motion capture cannot easily acquire the in vivo joint kinematics of the first MTPJ in shoes. Thus, the present study aims to investigate the differences of the first MTPJ's six-degree-of-freedom (6DOF) kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). In total, 15 healthy male runners were recruited. Computed tomography scans were taken from each participant's right foot for the construction of 3D models and local coordinate systems. Radiographic images were acquired at 100 Hz while the participants ran at a speed of 3 m/s ± 5% in shod and barefoot conditions along an elevated runway, and 6DOF kinematics of the first MTPJ were calculated by 3D-2D registration. Paired sample t-tests were used to compare the kinematic characteristics of the first MTPJ 6DOF kinematics during the stance phase between shod and barefoot conditions. Compared with barefoot, wearing shoes showed significant changes (p < 0.05): 1) the first MTPJ moved less inferior at 50% but moved less superior at 90 and 100% of the stance phase; 2) the peak medial, posterior, and superior translation of the first MTPJ significantly decreased in the shod condition; 3) the extension angle of the first MTPJ was larger at 30-60% but smaller at 90 and 100% of the stance phase; 4) the maximum extension angle and flexion/extension range of motion of the first MTPJ were reduced; and 5) the minimum extension and adduction angle of the first MTPJ was increased in the shod condition. On the basis of the high-speed DFIS, the aforementioned results indicated that wearing shoes limited the first MTPJ flexion and extension movement and increased the adduction angle, suggesting that shoes may affect the propulsion of the first MTPJ and increase the risk of hallux valgus.

9.
Glob Chang Biol ; 28(14): 4308-4322, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35340089

RESUMEN

Coastal methane (CH4 ) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, δ13 C-CH4  values, and CH4  sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460 nM CH4 ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ13 C-CH4  signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of ~1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4  sources (i.e., releasing ≥ 100 µmol CH4  m-2  day-1 in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.


Asunto(s)
Ecosistema , Metano , Carbono , Dióxido de Carbono , Reproducibilidad de los Resultados , Humedales
10.
Glob Chang Biol ; 28(8): 2736-2750, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35060227

RESUMEN

Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predicting long-term C sequestration in terrestrial ecosystems using Earth System Models. In this study, we carried out an intensive field investigation (79 sites, 237 soil profiles [0-100 cm], and 61 vegetation assessments) to quantify PhytOC storage in China's grasslands and to better explore the biogeographical patterns and influencing factors. Generally, PhytOC production flux and soil PhytOC density in both the Tibetan Plateau and the Inner Mongolian Plateau had a decreasing trend from the Northeast to the Southwest. The aboveground PhytOC production rate in China's grassland was 0.48 × 106 t CO2 a-1 , and the soil PhytOC storage was 383 × 106 t CO2 . About 45% of soil PhytOC was stored in the deep soil layers (50-100 cm), highlighting the importance of deep soil layers for C stock assessments. Importantly, the Tibetan Plateau had the greatest contribution (more than 70%) to the PhytOC storage in China's grasslands. The results of multiple regression analysis indicated that altitude and soil texture significantly influenced the spatial distribution of soil PhytOC, explaining 78.1% of the total variation. Soil phytolith turnover time in China's grasslands was mainly controlled by climatic conditions, with the turnover time on the Tibetan Plateau being significantly longer than that on the Inner Mongolian Plateau. Our results offer more accurate estimates of the potential for phytolith C sequestration from ecological restoration projects in degraded grassland ecosystems. These estimates are essential to parameterizing and validating global C models.


Asunto(s)
Secuestro de Carbono , Pradera , Carbono/análisis , Dióxido de Carbono/análisis , China , Ecosistema , Suelo
11.
Front Bioeng Biotechnol ; 9: 693806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34350162

RESUMEN

Foot and ankle joints are complicated anatomical structures that combine the tibiotalar and subtalar joints. They play an extremely important role in walking, running, jumping and other dynamic activities of the human body. The in vivo kinematic analysis of the foot and ankle helps deeply understand the movement characteristics of these structures, as well as identify abnormal joint movements and treat related diseases. However, the technical deficiencies of traditional medical imaging methods limit studies on in vivo foot and ankle biomechanics. During the last decade, the dual fluoroscopic imaging system (DFIS) has enabled the accurate and noninvasive measurements of the dynamic and static activities in the joints of the body. Thus, this method can be utilised to quantify the movement in the single bones of the foot and ankle and analyse different morphological joints and complex bone positions and movement patterns within these organs. Moreover, it has been widely used in the field of image diagnosis and clinical biomechanics evaluation. The integration of existing single DFIS studies has great methodological reference value for future research on the foot and ankle. Therefore, this review evaluated existing studies that applied DFIS to measure the in vivo kinematics of the foot and ankle during various activities in healthy and pathologic populations. The difference between DFIS and traditional biomechanical measurement methods was shown. The advantages and shortcomings of DFIS in practical application were further elucidated, and effective theoretical support and constructive research direction for future studies on the human foot and ankle were provided.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(3): 602-608, 2021 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-34180207

RESUMEN

The technical deficiencies in traditional medical imagining methods limit the study of in vivo ankle biomechanics. A dual fluoroscopic imaging system (DFIS) provides accurate and non-invasive measurements of dynamic and static activities in joints of the body. This approach can be used to quantify the movement in the single bones of the ankle and analyse different morphological and complex bone positions and movement patterns within these organs and has been widely used in the field of image diagnosis and evaluation of clinical biomechanics. This paper reviews the applications of DFIS that were used to measure the in vivo kinematics of the ankle in the field of clinical and sports medicine. The advantages and shortcomings of DFIS in the practical application are summarised. We further put forward effective research programs for understanding the movement as well as injury mechanism of the ankle in vivo, and provide constructive research direction for future study.


Asunto(s)
Articulación del Tobillo , Tobillo , Fenómenos Biomecánicos , Rango del Movimiento Articular , Tecnología
13.
Front Microbiol ; 11: 1536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733420

RESUMEN

Coastal zones are transitional areas between land and sea where large amounts of organic and inorganic carbon compounds are recycled by microbes. Especially shallow zones near land have been shown to be the main source for oceanic methane (CH4) emissions. Water depth has been predicted as the best explanatory variable, which is related to CH4 ebullition, but exactly how sediment methanotrophs mediates these emissions along water depth is unknown. Here, we investigated the relative abundance and RNA transcripts attributed to methane oxidation proteins of aerobic methanotrophs in the sediment of shallow coastal zones with high CH4 concentrations within a depth gradient from 10-45 m. Field sampling consisted of collecting sediment (top 0-2 cm layer) from eight stations along this depth gradient in the coastal Baltic Sea. The relative abundance and RNA transcripts attributed to the CH4 oxidizing protein (pMMO; particulate methane monooxygenase) of the dominant methanotroph Methylococcales was significantly higher in deeper costal offshore areas (36-45 m water depth) compared to adjacent shallow zones (10-28 m). This was in accordance with the shallow zones having higher CH4 concentrations in the surface water, as well as more CH4 seeps from the sediment. Furthermore, our findings indicate that the low prevalence of Methylococcales and RNA transcripts attributed to pMMO was restrained to the euphotic zone (indicated by Photosynthetically active radiation (PAR) data, photosynthesis proteins, and 18S rRNA data of benthic diatoms). This was also indicated by a positive relationship between water depth and the relative abundance of Methylococcales and pMMO. How these processes are affected by light availability requires further studies. CH4 ebullition potentially bypasses aerobic methanotrophs in shallow coastal areas, reducing CH4 availability and limiting their growth. Such mechanism could help explain their reduced relative abundance and related RNA transcripts for pMMO. These findings can partly explain the difference in CH4 concentrations between shallow and deep coastal areas, and the relationship between CH4 concentrations and water depth.

14.
J Sports Sci Med ; 19(1): 20-37, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132824

RESUMEN

Although the role of shoe constructions on running injury and performance has been widely investigated, systematic reviews on the shoe construction effects on running biomechanics were rarely reported. Therefore, this review focuses on the relevant research studies examining the biomechanical effect of running shoe constructions on reducing running-related injury and optimising performance. Searches of five databases and Footwear Science from January 1994 to September 2018 for related biomechanical studies which investigated running footwear constructions yielded a total of 1260 articles. After duplications were removed and exclusion criteria applied to the titles, abstracts and full text, 63 studies remained and categorised into following constructions: (a) shoe lace, (b) midsole, (c) heel flare, (d) heel-toe drop, (e) minimalist shoes, (f) Masai Barefoot Technologies, (g) heel cup, (h) upper, and (i) bending stiffness. Some running shoe constructions positively affect athletic performance-related and injury-related variables: 1) increasing the stiffness of running shoes at the optimal range can benefit performance-related variables; 2) softer midsoles can reduce impact forces and loading rates; 3) thicker midsoles can provide better cushioning effects and attenuate shock during impacts but may also decrease plantar sensations of a foot; 4) minimalist shoes can improve running economy and increase the cross-sectional area and stiffness of Achilles tendon but it would increase the metatarsophalangeal and ankle joint loading compared to the conventional shoes. While shoe constructions can effectively influence running biomechanics, research on some constructions including shoe lace, heel flare, heel-toe drop, Masai Barefoot Technologies, heel cup, and upper requires further investigation before a viable scientific guideline can be made. Future research is also needed to develop standard testing protocols to determine the optimal stiffness, thickness, and heel-toe drop of running shoes to optimise performance-related variables and prevent running-related injuries.


Asunto(s)
Rendimiento Atlético/fisiología , Carrera/lesiones , Carrera/fisiología , Zapatos , Tendón Calcáneo/fisiología , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Diseño de Equipo , Antepié Humano/fisiología , Humanos , Articulación Metatarsofalángica/fisiología , Estrés Mecánico
15.
Acta Bioeng Biomech ; 21(2): 11-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31741477

RESUMEN

PURPOSE: This study aimed to explore the effect of fatigue on the biomechanical contribution of the lower extremity joints during a typical stretch-shortening cycle (SSC) task. METHODS: 15 male athletes completed drop jump (DJ) under pre- and post-fatigue. Vicon motion capture system and 3D Kistler force plates were used to collect kinematics and ground reaction force data simultaneously. RESULTS: Under fatigue condition, 1) the DJ height decreased; the touchdown angle of knee and ankle reduced and the range of motion increased; 2) the maximum push-off moment and power of knee was reduced; 3) the stiffness of knee, ankle, and legs was reduced; 4) the energy generation and the net energy of the ankle decreased; 5) the energy contribution of knee decreased during the eccentric phase. CONCLUSIONS: Fatigue altered biomechanical contribution of the lower extremity joints by changing the movement pattern during DJ. The control ability of the knee and ankle were decreased. Eventually, the jump performance was reduced. In addition, the decrease of stiffness as well as the energy contribution of these joints can be used as sensitive indices to evaluate the performance of DJ after fatigue.


Asunto(s)
Articulaciones/fisiología , Extremidad Inferior/fisiología , Fatiga Muscular/fisiología , Ejercicios de Estiramiento Muscular , Fenómenos Biomecánicos , Humanos , Locomoción , Masculino , Adulto Joven
16.
Opt Express ; 27(3): 3422-3428, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732362

RESUMEN

In this paper, we propose a unified field-programmable gate array (FPGA) structure for a rate-adaptive forward error correction (FEC) scheme based on spatially coupled (SC) LDPC codes derived from quasi-cyclic (QC) LDPC codes. We described the unified decoder structure in detail and showed that the rate adaptation can be achieved by a controller on-the-fly. By FPGA based emulation, the results show that, with comparable complexity, the SC codes provide larger coding gain. The implemented unified structure can be employed for any template QC-LDPC code to achieve a spatially-coupling based code-rate adaptation scheme.

17.
J Sports Sci Med ; 17(4): 640-649, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30479533

RESUMEN

The aim of this study was to determine the effects of two fatigue protocols on lower-limb joint mechanics, stiffness and energy absorption during drop landings. Fifteen male athletes completed landing tasks before and after two fatigue protocols (constant speed running [R-FP] and repeated shuttle sprint plus vertical jump [SJ-FP]). Sagittal plane lower-limb kinematics and ground reaction forces were recorded. Compared with R-FP, SJ-FP required significantly less intervention time to produce a fatigue state. The ranges of motion (RoM) of the hip were significantly greater when the athletes were fatigued for both protocols. Knee RoM significantly increased after SJ-FP but not after R-FP (p > 0.05), whereas the RoM of the ankle was significantly greater after R-FP but lower after SJ-FP. When fatigued, the first peak knee extension moment was significantly greater in R-FP but lower in SJ-FP; the second peak ankle plantar flexion moment was lower, regardless of protocols. After fatigue, vertical, hip, and knee stiffness was lower, and more energy was absorbed at the hip and knee for both protocols. Hip and knee extensors played a crucial role in altering movement control strategies to maintain similar impact forces and to dissipate more energy through a flexed landing posture when fatigued compared to when non-fatigued. Furthermore, SJ-FP seems to be a more efficient method to induce fatigue due to less intervention time than R-FP.


Asunto(s)
Articulación del Tobillo/fisiología , Fatiga/fisiopatología , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Carrera , Atletas , Fenómenos Biomecánicos , Humanos , Masculino , Adulto Joven
18.
Opt Express ; 26(22): 29319-29329, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470097

RESUMEN

In this paper, we proposed a class of large-girth QC-LDPC codes designed to maximize the girth property with code rates ranging from 0.5 to 0.8, which leads to well-structured parity-check matrix and generator matrix. Instead of implementing several FEC encoder and decoder engines in hardware, we design an efficient unified FPGA-based architecture enabling run-time reconfigurable capability. Apart from four principle LDPC codes being incorporated into a unified design, shortening is adopted to bridge the rate gap between principle codes. With our proposed unified LDPC engine, the signal-to-noise ratio (SNR) limits of -1 dB to 2.2 dB have been demonstrated at BER of 10-12 in additive white Gaussian noise (AWGN) channel by FPGA emulation. It is desirable for the application to both free-space optical (FSO) and fiber optics communications. Large code rate range is preferred to deal with various channel impairments. To further verify the proposed unified code engine for FSO applications, we tested the scheme through a spatial light modulator (SLM)-based FSO channel emulator. We showed that in medium atmospheric turbulence regime, a post-FEC BER below 10-8 can be achieved without any interleaver and adaptive optics.

19.
J Hum Kinet ; 64: 13-23, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30429895

RESUMEN

This study aimed to explore the effects of strike patterns and shoe conditions on foot loading during running. Twelve male runners were required to run under shoe (SR) and barefoot conditions (BR) with forefoot (FFS) and rearfoot strike patterns (RFS). Kistler force plates and the Medilogic insole plantar pressure system were used to collect kinetic data. SR with RFS significantly reduced the maximum loading rate, whereas SR with FFS significantly increased the maximum push-off force compared to BR. Plantar pressure variables were more influenced by the strike patterns (15 out of 18 variables) than shoe conditions (7 out of 18 variables). The peak pressure of midfoot and heel regions was significantly increased in RFS, but appeared in a later time compared to FFS. The influence of strike patterns on running, particularly on plantar pressure characteristics, was more significant than that of shoe conditions. Heel-toe running caused a significant impact force on the heel, whereas wearing cushioned shoes significantly reduced the maximum loading rate. FFS running can prevent the impact caused by RFS. However, peak plantar pressure was centered at the forefoot for a long period, thereby inducing a potential risk of injury in the metatarsus/phalanx.

20.
Carbohydr Polym ; 193: 82-88, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29773400

RESUMEN

A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples.


Asunto(s)
Antibacterianos/farmacología , Celulosa/farmacología , Nanopartículas del Metal/química , Estructuras Metalorgánicas/farmacología , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Celulosa/química , Relación Dosis-Respuesta a Droga , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata/química , Staphylococcus aureus/crecimiento & desarrollo , Relación Estructura-Actividad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...